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System of m linear equations in n unknowns (linear system)

ainxy + apxe + -+ amxp = b
aix1 + apxa + - + amxp = b
amix1 + amexe + -+ 4+ amnXn = bm
Matrix form
ail aw -+ ain X1 by
a1 axp -+ ax X2 by
Aml dm2 - Aamn Xn bm
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Augmented matrix

a1 ai2 -+ Adin bl
a1 ax - ax | b

dml dm2 -  dmn bm
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An elementary row operation is an operation on a matrix of one
of the following form.

@ Multiply a row by a non-zero constant.
@ Interchange two rows.

© Replace a row by its sum with a multiple of another row.
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Two matrices A and B are said to be row equivalent if we can
use elementary row operations to get B from A.

Proposition

If the augmented matrices of two linear systems are row
equivalent, then the two systems are equivalent, i.e., they have the
same solution set. )
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A matrix E is said to be in row echelon form if
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© The first nonzero entry of each row of E is 1.

@ Every row of E that consists entirely of zeros lies beneath
every row that contains a nonzero entry.

© In each row of E that contains a nonzero entry, the number of
leading zeros is strictly less than that in the preceding row.

Proposition

Any matrix can be transformed into row echelon form by
elementary row operations. This process is called Gaussian
elimination.
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Row echelon form of augmented matrix.
Those variables that correspond to columns containing leading
entries are called leading variables
@ All the other variables are called free variables.
A system in row echelon form can be solved easily by back

substitution.
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Solve the linear system

XX 4+ x — x3 = b
21 — X2 + 4x3 = -2
X1 — 2x + bxz = —4
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Solution:
Ry — Ry — 2Ry
101 -1 s R > Ry Ry 1 1 2| s
2 1 4 | -2 5 0 -3 6 | -12
1 —2 5 | —4 0 -3 6 | -9
o1 11 -2 s e 3R 11 —20s5
23 0 1 -2 a SRl 01 —2|a4
0 -3 6 | -9 o 0 0 |3

The third row of the last matrix corresponds to the equation
0=3

which is absurd. Therefore the solution set is empty and the
system is inconsistent. O
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Solve the linear system

x1 + 2 + x3 + x4 + x5 = 2
X1 + x + x3 + 24 + 2x5 = 3
X1 + x + x3 + 2x4 + 3x5 = 2
Solution:
Ry - R — Ry
1101 1 12 Ry — Rs — Ry 1101 1 1|2
1 1 1 2 2 3 — 0 0 0 1 1 1
1 1 1 2 3 2 0 0 0 1 2 0
1 1 1 1 1 2
i 000 0 1 1] 1
0 0 0 0 1 —1
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Thus the system is equivalent to the following system

X + x2 + x3 + x4 + x5 = 2
X2 + x5 = 1
X5 = -1

The solution of the system is
X5 = -1

X4:1—X5:2
X1=2—X —Xx3—X4g—Xs=1—x —Xx3

Here x1, x4, x5 are leading variables while x>, x3 are free variables.
Another way of expressing the solution is

(X17X27X37X47X5) — (1 - CY—,B,CY,/B,27—1), CY,/B S R
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Definition

A matrix E is said to be in reduced row echelon form (or E is a
reduced row echelon matrix) if it satisfies all the following
properties:

@ It is in row echelon form.

@ Each leading entry of E is the only nonzero entry in its
column.

Proposition

Every matrix is row equivalent to one and only one matrix in
reduced row echelon form.
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Find the reduced row echelon form of the matrix

1 21 4

3 8 7 20

2 7 9 23

Solution:
Ry = Ry — 3R,

12 1 4 R R 2R 12 1 4
3 8 7 20 5, 0 2 4 8
2 7 9 23 0 3 7 15
1R 12 1 4 B 12 1 4
27372 001 2 4 3R -3ke 01 2 4
0 3 7 15 0o 0o 1 3

Rl — Ry + 3R;
Ry —R; —2Ry 10 -3 -4 Ry — Ry — 2R 1 0 0 5
SN 01 2 4 — 0 1 -2

o

0o 0 1 3
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Solve the linear system

x1 + 2x 4+ 3x3 + 4x4 = 5
X1 + 2% 4+ 2x3 + 3x4g =
x1 + 2% + x3 + 2x = 3

N~
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Solution:
Ry — Ry — Ry
1 2 3 4 s R — R — Ry 1 2 3 4 5
1 2 2 3 4 3 000 -1 -1 -1
1 2 1 2 3 0 0 -2 -2 -2
1 2 3 4 5 1 2 3 4 s
R —R R: R3+2R:-
225" 0 0 1 1 1 3l 2R 000 1 1 1
000 -2 -2 -2 000 0 0 0
Ry—Ry —3Ry 1 2 0 1 2
AT 000 1 1 1
000 0 0 O

Now x1, x3 are leading variables while x, x4 are free variables. The
solution of the system is

(X17X27X35X4) = (2_205_B70531 _B7ﬁ)7 avﬁ € R.

g
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Theorem
Let

Ax=Db

be a linear system, where A is an m x n matrix. Let R be the
unique m x (n+ 1) reduced row echelon matrix of the augmented
matrix (A|b). Then the system has

@ no solution if the last column of R contains a leading entry.

@ unique solution if (1) does not holds and all variables are
leading variables.

© infinitely many solutions if (1) does not holds and there exists
at least one free variables.
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Theorem

Let A be an n x n matrix. Then homogeneous linear system
Ax=0

with coefficient matrix A has only trivial solution if and only if A is
row equivalent to the identity matrix I.
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We define the following operations for matrices.

1 Addition: Let A = [a;] and B = [b;j] be two m X n matrices. Define

[A + B];j = aj + bj.

That is
ain a2 - am bii bz -+ b
a1 ax - an b1 b - boy
_|_
aml am?2 te dmn bml bm2 te bmn
ain+bu  an+be -+ awn+ by
an+bn  ax+bn - awm+ b
amil I bml am?2 T bm2 o dmn aF bmn
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2 Scalar multiplication: Let A = [aj]| be an m x n matrix and
¢ be a scalar. Then

[cA]jj = cajj.

That is
di1 d12 -+ din ¢ajlx  Caiz -+ Caip
a1 ax azn Caz1 Caxpp -+ Cazp
C =

dml dm2 ' dmn Cam1 Cam2 -+ Camn
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3 Matrix multiplication: Let A = [a;] be an m x n matrix and

B = [bjx] be an n x r. Then their matrix product AB is an
m X r matrix where

Linear Systems and Matrices

[ABJy = " ajjbjx = aj1bix + aizbak + - + ainbnk.
j=1

For example: If A is a 3 X 2 matrix and B is a 2 X 2 matrix,

then
air  an b b aubir + aobr  aubiz + anbx
a1 ax < bz blz ) = an1bin + axnbo1  axibio + anbx
a1l as asibi1 + as2b21  asibiz + az bz

is a 3 X 2 matrix.
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@ A zero matrix, denoted by 0, is a matrix whose entries are all
Zeros.

@ An identity matrix, denoted by I, is a square matrix that has
ones on its principal diagonal and zero elsewhere.
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Theorem (Properties of matrix algebra)

Let A, B and C be matrices of appropriate sizes to make the
indicated operations possible and a, b be real numbers, then
following identities hold.

QO A+B=B+A

QA+(B+C)=(A+B)+C

QA+0=0+A=A

Q a(A+B)=aA+aB

@ (a+b)A=2aA+bA

Q@ a(bA) = (ab)A

@ 2(AB) = (aA)B = A(aB)

O A(BC) = (AB)C

O A(B+C)=AB+AC

@ (A+B)C=AC+BC

@ A0=0A=0

@ AI=IA=A
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We only prove (8) and the rest are obvious. Let A = [aj;] be
m x n, B = [bj] be nx r and C = [cy] be r x s matrices. Then

Linear Systems and Matrices

[(AB)C]y Z[AB]ikaI
k=1

k=1 \j=1
n r
= E ajj E bjk cki
=1 k=1

= > ay[BC
j=1
= [A(BQO)a
L]
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Remarks:

@ In general, AB # BA. For example:
11 10
A_<01)andB—<02>

11 10 2
w5 1) (o 2 )
1 0 11 1
BA_(O 2)(01 2)

Then

But
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Definition

Let A = [aj] be an m x n matrix. Then the transpose of A is the

n X m matrix defined by interchanging rows and columns and is
denoted by AT e,

[AT]j,-:a,-j for1 <j<nl<i<m.

-1 7 5 7
7 -2 6\ 7 15

o1 2 3] = =2 2 0
5 0 4 6 3 4

[ ]
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Theorem (Properties of transpose)

For any m x n matrices A and B,
(AT)T =A
Q@ (A+B)T=AT +BT;
( ) _CAT.
O (AB)" =BTAT,
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Definition

A square matrix A is said to be invertible, if there exists a matrix
B such that
AB =BA = 1.

We say that B is a (multiplicative) inverse of A.
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If A is invertible, then the inverse of A is unique.

Suppose B; and By are multiplicative inverses of A. Then

B, = Byl = By(AB;) = (B,A)B; = IB; = B;.

The unique inverse of A is denoted by A~!.
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The 2 X 2 matrix
a b
A= (2 4)

is invertible if and only if ad — bc # 0, in which case

1 d —b
Al=_——— :
ad —bc \ —c a >
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Let A and B be two invertible n X n matrices.
Q@ Al isinvertible and (A~1)"1 = A;
@ For any nonnegative integer k, A¥ is invertible and
(Ak)fl — (Afl)k;
© The product AB is invertible and
(AB)"! =B AL,

© AT is invertible and

(A7)t = (A"

Linear Algebra



Row Echelon Form

Matrix Operations

Inverse of matrices

Determinants

Linear Equations and Curve Fitting

Linear Systems and Matrices

We prove (3) only.

(AB)(B~1A-1) = A(BB-1)A-l = AIA-l = AA-1 |
(B-!A-1)(AB) =B~1(A-1A)B=B-lIB=B- !B =1

Therefore AB is invertible and B-1A~1 is the inverse of AB. O
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If the n x n matrix A is invertible, then for any n-vector b the
system Ax = b has the unique solution x = A~ !b.
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Solve the system

I + 6x0 = 6
5t + 9% = 18

5 9

M meeel s ) (5 1)

Thus the solution is

Solution: Let A = < 4.6 ) Then

Therefore (x1,x2) = (=9, 7). O
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A square matrix E is called an elementary matrix if it can be
obtained by performing a single elementary row operation on |.

| \

Proposition

Let E be the elementary matrix obtained by performing a certain
elementary row operation on |. Then the result of performing the
same elementary row operation on a matrix A is EA.

Proposition

Every elementary matrix is invertible.
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Example

Examples of elementary matrices associated to elementary row operations and their inverses.
Elementary Interchanging Multiplying a row Adding a multiple of
row operation two rows by a nonzero constant a row to another row
1 0 0 1 0 0 1 0 -2
Elementary matrix o 0 1 0o 1 0 0o 1 0
0o 1 o 0o 0 3 0 o 1
1 0 0 1 0 o0 1 0 2
Inverse 0 0 1 o 1 0 0 1 o0
0 1 0 o o 1 0 0 1
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Theorem

Let A be a square matrix. Then the following statements are
equivalent.

© A is invertible

@ A is row equivalent to |

© A is a product of elementary matrices

It follows easily from the fact that an n x n reduced row echelon
matrix is invertible if and only if it is the identity matrix I. Ol
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Let A be an invertible matrix. Then the above theorem tells us
that there exists elementary matrices E1, Ep, - - - , Ex such that

ELE; ;- EsE1A = 1.

Multiplying both sides by (E1)™Y(Ez)™!--- (Ex_1)"*(Ex)~! we
have
A= (E1) 1(Ex) ' (E1) H(Ex)

Therefore
Al = ELEr_1---E>E;

by Proposition 3.4.
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Theorem

Let A be a square matrix. Suppose we can preform elementary row
operation to the augmented matrix (A|l) to obtain a matrix of the
form (1|E), then A~! = E.

Proof.

Let Eq, Ey, - -, Ex be elementary matrices such that

EcEx_1--- ExE1(A|l) = (1|E).
Then the multiplication on the left submatrix gives
ExEx_1---EcE;A =1
and the multiplication of the right submatrix gives

E=E.E, ; --E;Ejl=A"1.
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Find the inverse of

4 3 2
5 6 3
3 5 2
Solution:
4 3 2100
5 6 3 | 0 1 0
35 2| 0 0 1
1 2 0] 10 -1
Ri2RusFRs 5 6 3| 0 1 0
35 200 1
R, — Ry — 5R:
R oo 1 -2 0 1 0 -1
BN 0 16 3 | -5 1 5
0 11 2 | -3 0 4
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2 0 1 0 -1
oo Rs 5 1 | —2 1 1
11 2| -3 0 4
1 2 0 1 0 -1
Ram2Rs 2Ry 0 05 1 | —2 1 1
0 1 o0 1 -2 2
1 -2 0 1 0 -1
Rerfis 0 1 o0 1 -2 2
0o 5 1| -2 1 1
R 1 -2 0 1 0 -1
T 0 1 0 1 -2 2
0o 0 1| -7 11 -9
1 00 3 -4 3
Fimhup2fe 010 | 1 -2 2
00 1 | -7 11 -9
Therefore
3 -4 3
Al = 1 -2 2
7 11 -9

O
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Find a 3 x 2 matrix X such that

1 2 3 0 -3
2 1 2 | X= -1 4
1 3 4 2 1
Solution:
1 2 3 0 -3
2 1 2 -1 4
1 3 4 2 1
R2 — R2 — 5R1
R3; — R3 — 3Ry 1 2 3 0 =3
— 0 -3 -4 -1 10
0 1 1 2 4
1 2 3 0 -3
R fs 0 1 1 2 4
0 -3 -4 -1 10
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R3— R343R, 123 0 -3
— 0o 1 1 2 4
0o 0 -1 5 22
R; — —R3 1 2 3 0 -3
— 0 1 1 2 4
0 0 1 -5 22
R1 — R1 — 3R3
Ry — Ry — Rs 1 2 0 15 63
— 0 1 0 7 26
0 5 1 -5 =22
R — Ri — 2R; 1 0 O 1 11
— 0 1 0 7 26
0 0 1 -5 =22
Therefore we may take
1 11
X = 7 26
-5 =22
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Let A = [aj] be an n x n matrix.
© The ij-th minor of A is the determinant Mj; of the

(n—1) x (n — 1) submatrix that remains after deleting the
i-th row and the j-th column of A.

@ The ij-th cofactor of A is defined by

Aj = (=1)" M.
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Let A = [aj] be an n x n matrix. The determinant det(A) of A is
defined inductively as follow.

Q@ /fn=1, then det(A) = a1l
@ /fn>1, then

n
det(A) = Z a1kArk = annAn + avA2 + -+ + a1pAin,
k=1

where Aj; is the ij-th cofactor of A.

Linear Algebra



Row Echelon Form

Matrix Operations

Inverse of matrices

Determinants

Linear Equations and Curve Fitting

Linear Systems and Matrices

Example

When n = 1,2 or 3, we have the following.

@ The determinant of a1 x 1 matrix is
|311\ = a1
@ The determinant of a 2 x 2 matrix is

a1l a12
= d11822 — 412421
a1 ax

© The determinant of a 3 x 3 matrix is

ail a2 ai3
ani ax azx | =aun
asi asz2  ass

ari an2
as1 az2

axz az;
432  as3

a1 a

+ a3
a1 ass

— a2
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4 3 0 1

3 2 0 1

1 0 0 3

01 2 1

2 0 1 3 0 1 3 2 1 3 .2 0
:4003‘—3’1034—0103—1100

1 2 1 0 2 1 0 1 1 0 1 2

0 3 0 3 0 O
G i )

=012 1-ols 2] 2 ))
-] 2]-2|5 3 [+of 0 1)
= 4(2(-6)) —3(3(~6) +1(2)) — (—2(2))
= 4

O
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Let A = [ajj] be an n x n matrix. Then

det(A Z sign(0)a10(1)320(2) * * * Ano(n)>
O'GSn

where S, is the set of all permutations of {1,2,--- ,n} and

if o is an even permutation,
if o is an odd permutation.

Serlo)) = { o
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@ There are n! number of terms for an n X n determinant.

@ Here we write down the 4! = 24 terms of a 4 x 4 determinant.

di1 d12 a13 dia

a1 dx a3 ax

a31 432 433 asu

dal  d42 A43  da4

a118223833844 — 311322834343 — 311823332844 + 311323834342
+a11324332843 — 311324333342 — 312321333344 + 312321334343
1312823331344 — 312323334341 — 312324331343 + 312324333341
1313321332844 — 313321334342 — 313322331344 + 313322334341
1313324331342 — 313824332341 — 314321332343 + 314321333342
+a14322331343 — 314322333341 — 314323331342 + 314323332341
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Theorem

The determinant of an n x n matrix A = [a;j] can be obtained by
expansion along any row or column, i.e., for any 1 < i < n, we have

det(A) = aj1 A + aipAip + - - - + ainAin

and for any 1 < j < n, we have

det(A) = alel_j = 32jA2_j +-+ anjAnj-
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We can expand the determinant along the third column.

Linear Systems and Matrices

O = W D
= O N W
N O O O
= W = =
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Properties of determinant.
Q det(l) =1;
@ Suppose that the matrices A1, Ay and B are identical except
for their i-th row (or column) and that the i-th row (or

column) of B is the sum of the i-th row (or column) of A;
and A;, then det(B) = det(A;) + det(Ay);

© If B is obtained from A by multiplying a single row (or
column) of A by the constant k, then det(B) = k det(A);

Q If B is obtained from A by interchanging two rows (or
columns), then det(B) = — det(A);
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@ If B is obtained from A by adding a constant multiple of one row
(or column) of A to another row (or column) of A, then
det(B) = det(A);

Q If two rows (or columns) of A are identical, then det(A) = 0;

@ IfA has a row (or column) consisting entirely of zeros, then
det(A) =0;

Q det(AT) = det(A);

Q If A is a triangular matrix, then det(A) is the product of the
diagonal elements of A;

@ det(AB) = det(A)det(B).
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2 2 5 5§ 0 6 -3 3
1 -2 4 1 1 —2 4 1 = I =2
= R3; -+ R3 + Ry
-1 2 -2 -2 0 0 2 -1 R R4 2R
-2 7 -3 2 0 3 5 4 2 ° 2
6 -3 3
3 5 4
2 -1 1
= 3]0 2 -1
3 5 4
-1 1 -1 1
- ()5 4] 4)
= —69
O
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2 2 5 5 2 6 -3 3
1 -2 4 1 1 0 0 0 G —+ G +2G
= C3~>C374C1
1 2 2 2 10 2 -1 A
2 7 -3 2 2 3 5 4 4= Ca— Q1
6 -3 3
3 5 4
. . 3 C1—>C1—2C3
= -2 11l gog+c
5 9 4 2= 4o e
2 1
- 3| 55
= 69

O
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Let a1, 0p,- -+ , e be real numbers and
1 a1 a2 -+ ap
1 x a -+ «p
A— 1 o1 x -+ ap
1 a1 ap X
Show that
det(A) = (x — a1)(x — a2) - -+ (x — an).

Solution: Note that A is an (n+ 1) x (n+ 1) matrix. For simplicity we assume that
ai,ap, - ,ap are distinct. Observe that we have the following 3 facts.

@ det(A) is a polynomial of degree n in x;
@ det(A) = 0 when x = o; for some i;
© The coefficient of x" of det(A) is 1.
Then the equality follows by the factor theorem. O
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The Vandermonde determinant is defined as

1 x X12 X{771

1 x X3 - x2"71
V(XLXZ»"‘ 7Xn): . .

1 x» x2 xh—1

Show that
V(xi, %2, ,Xn) = H (x — xi)-

1<i<j<n

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.

@ V(x1,x2, - ,xn) is a polynomial of degree n(n —1)/2 in xq,x2, -+ , Xn;
@ Forany i #j, V(xi,x2, -+ ,xn) = 0 when x; = x;;
© The coefficient of )<2X32 coxPTL of V(x1, %2, ,%n) is 1.

O

Linear Algebra



Row Echelon Form

Matrix Operations

Inverse of matrices

Determinants

Linear Equations and Curve Fitting
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Let A = [aj] be an n x n matrix and E be an n x n elementary
matrix. Then

det(EA) = det(E) det(A).

Definition

Let A be a square matrix. We say that A is singular if the system
Ax = 0 has non-trivial solution. A square matrix is nonsingular if
it is not singular.
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The following properties of an n X n matrix A are equivalent.

O A is nonsingular, i.e., the system Ax = 0 has only trivial
solution x = 0.

Q A is invertible, i.e., A~1 exists.
© det(A) #0.
Q A is row equivalent to |.

© For any n-column vector b, the system Ax = b has a unique
solution.

@ For any n-column vector b, the system Ax = b has a solution.
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Proof.
We prove (3)<>(4) and leave the rest as an exercise. Multiply
elementary matrices E1, Ep,--- | Ex to A so that

R=EE,_;---E{A
is in reduced row echelon form. Then by the lemma above, we have
det(R) = det(E) det(Ex_1) - - - det(E1) det(A).

Since determinant of elementary matrices are always nonzero, we
have det(A) is nonzero if and only if det(R) is nonzero. It is easy
to see that the determinant of a reduced row echelon matrix is
nonzero if and only if it is the identity matrix I. Ol
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Theorem

Let A and B be two n X n matrices. Then

det(AB) = det(A) det(B).

Proof

If A is not invertible, then AB is not invertible and
det(AB) = 0 = det(A) det(B). If A is invertible, then there exists
elementary matrices E;, E5, - -+, Ey such that ExEx_;---E; = A. Hence

det(AB) = det(E Er 1- ElB)

= det(Ek) det(Ek,l) .- det(El) det(B)
(
(

(o

et(ExEx_1 - El)det(B)
det(A) det(B).
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Let A be a square matrix. The adjoint matrix of A is

adjA = [A;]T,
where Aj; is the ij-th cofactor of A. In other words,

[adjA]; = Aji.
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Theorem

Let A be a square matrix. Then
AadjA = (adjA)A = det(A)l,

where adjA is the adjoint matrix. In particular if A is invertible,
then

1
Al = _———adjA.
det(A)"V
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Proof.
The second statement follows easily from the first. For the first
statement, we have
n
[AadjA]; = > ailadjAly
=1
= Z ailAji
=1
= 6U det(A)
where
_J1 i=j
% = { 0, i#j
Therefore AadjA = det(A)l and similarly (adjA)A = det(A)l. O
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4 3 2
Let A = 5 6 3 . We have
3 5 2
6 3 5 3 5 6
det(A)_4' - '73 3 o +2' Yoo '_4(73)73(1)+2( )= =i,
6 3 13 2 3 2
5 2 5 2 6 3
. 5 3 4 2 4 2 =4 =
adjA = “13 9 3 9 “|5 3 = -1 2 —2
7 —-11 9
5 6 |4 3 4 3
3 5 3 5 5 6
Therefore
0 -3 4 -3 3 -4 3
Al=— | -1 2 -2 = 1 -2 2
-1\ 7 _—11 o9 -7 11 -9
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Theorem (Cramer’s rule)

Consider the n x n linear system Ax = b, with
A=[a; a - a,].

If det(A) # 0, then the i-th entry of the unique solution
X = (Xx1,%2,* ,Xn) IS

x,-:det(A)_ldet([al -+ aj_1 b ajyg - a,,]),

where the matrix in the last factor is obtained by replacing the i-th
column of A by b.
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al - bl <+ aip
1 ay - b2 I

an]. ... bn ... ann

Ol
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Use Cramer's rule to solve the linear system

X1 + 4dx + 5X3 = 2
4 + 2x + bxz3 = 3
—3X1 + 3X2 — X3 =
1 4 5
Solution: Let A = 4 2 5
-3 3 -1
2 5 4 5 4 2
i =2 3o 5 ] 4 2
= 1(—17)—4(11)+5(18)
= 20.

Linear Algebra



Row Echelon Form

Matrix Operations

Inverse of matrices

Determinants

Linear Equations and Curve Fitting

Linear Systems and Matrices

Thus by Cramer’s rule,

2
X1:f3
1
X = —| 4

X3 = =

—
WNPS P WDN
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Theorem

Let n be a non-negative integer, and (xo, ¥0), (x1, Y1), 5 (Xn, ¥n)
be n+ 1 points in R? such that x; # x; for any i # j. Then there
exists unique polynomial

p(x) = ap + aix + ax® 4 -+ apx",

of degree at most n such that p(x;) = y; for all 0 < i < n. The
coefficients of p(x) satisfy the linear system

1 xo xg Xy aop Yo
1 xq X12 oo x{ a V1
1 2 n

Xp X5 X} an Yn
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Theorem

Moreover, we can write down the polynomial function y = p(x)
directly as

1 x x° x" y
1 xo Xé x5 Yo
1 x1 xi Xt v | _ 0
1 .2 .n
Xn  Xj X7 Yo

Expanding the determinant, one sees that the equation is of the
form y = p(x) where p(x) is a polynomial of degree at most n.
Observe that the determinant is zero when (x,y) = (x;, y;) for
some 0 </ < n since two rows would be identical in this case.
Now it is well known that such polynomial is unique. []
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Find the equation of straight line passes through the points (xo, yo)
and (x1, y1)-

Solution: The equation of the required straight line is

1 x vy
1 % | =0
1 x1n

(Yo —y1)x + (x1 — x0)y + (xoy1 —xay0) = 0
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Find the cubic polynomial that interpolates the data points
(_17 4)7 (17 2)7 (27 ]-) and (3, 16)

Solution: The required equation is

1 x x2 x3 y
1 -1 1 -1 4
11 1 1 2 =0
1 2 4 8 1
1 3 9 27 16
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N
w

1 x x° x y
1 -1 1 -1 4
0o 2 0 2 =2 =0
0o 3 3 9 -3
0 4 8 28 12
1 x x2 x3 vy
10 0 0 7
01 0 0 -3 =0
001 0 -4
0 0 0 1 2
—7—|—3x+4x2—2x3+y = 0
y = T7-3x—4x>4+2x°
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Find the equation of the circle determined by the points (—1,5), (5, —3) and (6, 4).

Solution: The equation of the required circle is

x2 4 y? X y 1
(-1)2+52 -1 5 1 — 0
524+(-3)2 5 -3 1 -

62 + 42 6 4 1

x2 4 y? X y 1
26 -1 5 1 - 0
34 5 -3 1 -
52 6 4 1
xX24+y? x y 1
20 0 0 1 - 0
4 1 0 O -
2 0 1 0
X2+y2—4x—2y—20 = 0

[
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Subspaces

Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

A vector space over R consists of a set V and two operations
addition and scalar multiplication such that

Vector Spaces

Qu+tv=u+yv, foranyuveV;
(u+v)+w=u+(v+w), foranyu,v,we V;

There exists 0 € V such that u+ 0 =0+ u = u, for any
ucV;

© 0

Q For any u € V, there exists —u € V such that u + (—u) = 0;
Q@ a(u+v)=au+av, foranyac R andu,v e V;

O (a+ b)u=au+ bu, foranya,be R andu € V;

@ a(bu) = (ab)u, for any a,b€e R andu € V;

Q@ (u=u, foranyue V.
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The set

with
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Vector Spaces

X1
X2
R" =
Xn
X1 1
X2 y2
e
Xn Yn
X1
X2
a =
Xn
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

1 x; ER
X1+ y1
X2 + y2

Xn + Yn

axq
axp

axn




Definition and Examples

Subspaces

Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Example (Matrix Space)

The set of all m X n matrices
Mmxn = {A : A is an m X n matrix.}.

with usual matrix addition and scaler multiplication.

Example (Space of continuous functions)

The set of all continuous functions
Cla, b] = {f : f is a continuous function on [a, b].}

on [a, b] with

Linear Algebra



Definition and Examples
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Example (Space of polynomials over R)

The set of all polynomial
P,={ao+ax+- -+ a,,,lx”_l ©a0,a1, - ,an—1 € R.}
over R of degree less than n with

(a0 + arx + -+ ap_1x"" 1) + (bo + bix + -+ + bp_1x"7 1)
= (ao+ bo)+ (a1 + b1)x+ -+ (an-1 + bn_l)Xn_l
and

a(ap + aix+ -+ a,,_lx”*l) = aag + aax + - - + aap_1x" L.
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Definition

Let W be a nonempty subset of the vector space V. Then W is a
subspace of V' if W itself is a vector space with the operations of
addition and scalars multiplication defined in V.

Proposition

A nonempty subset W of a vector space V is a subspace of V if
and only if it satisfies the following two conditions:

© /fu andv are vectors in W, thenu -+ v is also in W.

@ Ifuisin W and c is a scalar, then cu is also in W'.
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In the following examples, W is a vector subspace of V:

Vector Spaces

@ V is any vector space; W = V or {0}.

e V — Rn,.
W:{(X17X2,--~ ,Xn)T eV: aixy + axxo + - -+ + anxp :0}'
where a1, as, - - - , ap are fixed real numbers.

©Q V = Myyo; W:{A:[a;j] € V2311+322:0}.

Q V is the set al all continuous functions C|a, b] on [a, b,
W ={f(x) € V:f(a) =f(b) =0}.

© V is the set of all polynomials P, of degree less than n;
W = {p(x) € V : p(0) = 0},

@ V is the set of all polynomials P, of degree less than n;
W = {p(x) € V: p'(0) = 0}.
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In the following examples, W is not a vector subspace of V:
O V=R W={(x,x) €V:x =1}
Q@ V=R"W={(x1,x, - ,x:)" € V:x1x =0}
Q V =My, W={A €V :det(A) =0}.

Vector Spaces

Example

Let A € M,,«n, then the solution set of the homogeneous linear
system
Ax=0

is a subspace of R". This subspace if called the solution space of
the system.

Linear Algebra



Definition and Examples
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Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Proposition

Let U and W be two subspaces of a vector space V, then
Q@ UnW={xeV:xeUandxe W} is subspace of V.
Q@ U+W={ut+weV:ueUandwe W} is subspace of V.

Q@ UUW={xeV:xeUorxec W} is a subspace of V if
andonly if U C W or W C U.
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Definition
Let vi,vp, - ,vx € V. The linear combination of vi,vy,--- v, is a
vector in V' of the form

C1V1 + Vo + -+ -+ CiVk., C1,C,-0 - ,Cp ER.

The span of vy, Vo, - - -,V is the set of all linear combination of

V1,Vo, -+, Vi and is denoted by span{vy,va, - ,vi}. If W is a subspace
of V and span{vy, vy, - ,vi} = W, then we say that vi,vp, - , vk is a
spanning set of W or vy, vy, - - v, span the subspace W.

Proposition
Let vi,vp,--- ,vx € V. Then

span{vy, vy, -+ ,Vk}

is a subspace of V.
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Let V =R3.

Q /fvi =(1,0,0)" and vy = (0,1,0)7, then
span{vi,v2} = {(a,3,0)7 : o, B € R}.

Q Ifvy =(1,0,0)7, vo =(0,1,0)" and v3 = (0,0,1)7, then
span{vy,vo,v3} = V.

© Ifvi=(2,0,1)7 and vy = (0,1,-3)7, then
span{vy,vo} = {(2a, B, — 35)T ta, B € R}

Q Ifvi=(1,-1,00",vo =(0,1,-1)7 and v3 = (-1,0,1)7,
then
span{vy,vo,v3} = {(x1,x2,x3) " : x1 + x2 + x3 = 0}
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Linear independence of vectors

Bases and dimension for vector spaces
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Vector Spaces

Let V = P3 be the set of all polynomial of degree less than 3.

Q@ Ifvy = x and vp = x2, then
span{vi,v2} = {p(x) € V' : p(0) = 0}.

Q Ifvi=1,vo=3x—2and vz =2x+1, then
span{vy,vp,v3} = span{vy,vo} = P5.

Q Ifvi=1—x% vy =x+2andvs =x2, then 1 = vi + v3,
x = —2v1 + Vo — 2v3 and x?> = v3. Thus span{vy, vy, v3}
contains span{1, x,x?} = P3. Therefore
span{vi,va,v3} = Ps.
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Vector Spaces

Letw = (2,-6,3)" € R3, vy = (1,-2,-1)" and
vo = (3,-5,4)T. Determine whether w € span{vy,vz}.

Solution: Write

1 3 2
al 2 |+l -5 = -6 |,
-1 4 3
that is
1 3 2
5 ) (3
1 4 @ 3
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Vector Spaces

The augmented matrix

1 3 2
2 -5 —6
1 4 3

can be reduced by elementary row operations to echelon form
1 3 2
01 -2
0 0 19

Thus the system is inconsistent. Therefore w is not a linear
combination of v; and vs. O
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Vector Spaces

Letw=(-7,7,11)T € R3, v; = (1,2,1)7, vo = (—4,-1,2)7 and
vy =(-3,1, 3)T. Express w as a linear combination of vi, v and
V3.

Solution: Write

1 —4 -3 —7
c 2 + C -1 + Cc3 1 = 7 ,
1 2 3 11
that is
1 -4 -3 1 —7
2 -1 1 Co = 7
1 2 3 c3 11
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Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

The augmented matrix

1 -4 -3 -7
2 -1 1 7
1 2 3 11

can be reduced by elementary row operations to echelon form

1 015
0113
0 00O

The system has more than one solution. For example we can write
w = 5v; 4 3vo,

or
w = 3vy + vy + 2vs.
E]
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Linear independence of vectors
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Letvi = (1,-1,0)7, vo = (0,1,-1)7 and v3 = (—1,0,1)".
Observe that

Vector Spaces

@ one of the vectors is a linear combination of the other. For
example
V3 = —V1 — Vo.

@ span{vi, vy, v3} contains a smaller spanning set. For example
span{vy,va} = span{vy, vy, v3}.

© there exists numbers c1, c», c3 € R, not all zero, such that
c1v1 + oo + czvz = 0. For example

vi+vo+v3 =0.
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Bases and dimension for vector spaces
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Vector Spaces

The vectors vi,Vp, -+ ,Vy in a vector space V are said be be
linearly independent if the equation

avi+ vy + -+ v =0

has only the trivial solution c; = ¢ = --- = ¢x = 0. The vectors
V1,V2, - , Vi are said be be linearly dependent if they are not
linearly independent.

Linear Algebra



Definition and Examples

Subspaces

Linear independence of vectors
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Vector Spaces

Let V be a vector space and vi,va,--- ,vx € V. Then the
following statements are equivalent.

@ None of the vectors is a linear combination of the other
vectors.

@ There does not exists a smaller spanning set of
span{vy,va, - ,Vk}.

© Every vector in span{vi,va,--- vk} can be expressed in only
one way as a linear combination of vi,vp, - , V.

@Q The vectors vi,va, - - ,Vi are linear independent.
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Vector Spaces

The standard unit vectors

e = (170>0""70)T
e = (07]-)0""70)7—

e, = (0,0,0,"' 71)T

are linearly independent in R".
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Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Example

Letvy = (1,2,2,1)7, vo = (2,3,4,1)7, v3 = (3,8,7,5)7 be vectors in
R*. Write the equation civi + covs + c3vz = 0 as the system

aa + 20 + 3¢ = 0
2cc + 3¢ + 8 = 0
2C1 aF 4C2 aF 7C3 = (0

a + o + bagg = 0

The augmented matrix of the system reduces to the echelon form

1 2 3 0
01 -2 0
00 1 O
00 0 O

Thus the only solution is ¢; = ¢; = c3 = 0. Therefore vy, v5,v3 are
linearly independent.
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Vector Spaces

Example

Letvi = (2,1,3)7, vo = (5,-2,4)7, v3 = (3,8,—6)T and
vs = (2,7,—4)7 be vectors in R3. Write the equation
C1V1 + &Vo + c3v3 + v = 0 as the system

cg + 50 + 3¢ + 2a = 0
a6 — 20 + 83 + Ta = 0
3t + 40 — 63 — 4y = 0

Because there are more unknowns than equations, thus it has a
nontrivial solution. Therefore v1,vy,v3, vy are linearly dependent.
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@ Two nonzero vectors vi,vy € V are linearly dependent if and
only if they are proportional, i.e., there exists ¢ € R such that

Vector Spaces

Vo = CVj.

@ If one of the vectors of vi,vo,--- ,vi € V is zero, then
V1,Vo, - Vg are linearly dependent.

© Letvi,vy,---,v, be n vectors in R" and

A:[Vl V2 vn]

be the n X n matrix having them as its column vectors. Then
V1,Vo2, - ,V, are linearly independent if and only if
det(A) # 0.

Q Letvi,vp,---,vi be k vectors in R", with k > n, then
V1,Vo2, - Vg are linearly dependent.
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Vector Spaces

Proof

© Obvious.
@ We may assume v; = 0. Then

1-vi+0-vp+---+0-v=0.

Therefore vi,va,--- , v, are linearly dependent.

(3] The vectors vi,va,--- , v, are linearly independent
& The system Ax = 0 has only trivial solution.
< A is nonsingular
& det(A) #0.

@ Since the system
cvit+ovy+---+cve=0

has more unknown than number of equations, it must have nontrivial solution
for c1, ¢, -, ck. Therefore vi,vp, - v, are linearly dependent.
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Row and column spaces

Vector Spaces

Definition

A set S of vectors in a vector space V is called a basis for V
provided that

@ the vectors in S are linearly independent, and

@ the vectors in S span V.
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Linear independence of vectors
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Row and column spaces

@ The vectors

Vector Spaces

e = (150505'”70)7—
e = (051707'”70)7—

e, = (070707'”71)7—

constitute a basis for R" and is called the standard basis for
R™.

@ The vectors vi = (1,1,1)7, v = (0,1,1)" and
v3 = (2,0,1)7 constitute a basis for R3.
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Vector Spaces

If V = span{vi,va,- - ,v,}, then any collection of m vectors in V,
with m > n, are linearly dependent.
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Vector Spaces

Let uy,up,--- ,uy, € V, m> n. Then we can write
up = anVi+apVa+ -+ anVs
Uy = apVi+ axpVo+ -+ axVy
Upn = amiVi+ amVo+ -+ amnVa.
We have
m n
cuy +ocuy+ -+ cpu, = E Ci E ajjV;
i=1 j=1
n m
= E Ciajj | Vj
j=1 \i=1
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Row and column spaces

Vector Spaces

Proof.
Consider the system

anca + anc + -+ amcm = 0
ai;p€i + a»c + - + amcm = 0
aipxt + ame + -+ 4+ amem = 0

Since the number of unknown is more than the number of equations,
there exists nontrivial solution for ¢y, ¢, -+ , ¢y and

cuy + ous + - -+ + cpu,, = 0.

Therefore the vectors up, uy, - -+ ,u,, are linearly dependent. ]
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Vector Spaces

Any two bases for a vector space consist of the same number of
vectors.

Let {uj,uz, - ,up} and {vi,vo, -+ ,v,} be two bases for V.
Since V = span{vi,va, - ,v,} and {ug,up, - ,un} are linearly
independent, we have m < n by Theorem 4.2. Similarly, we have
n < m. L]
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Subspaces

Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Definition

The dimension of a vector space V is the number of vectors of a
finite basis of V. We say that V is of dimension n (or V is an
n-dimensional vector space) if V' has a basis consisting of n
vectors. We say that V is an infinite dimensional vector space if
it does not have a finite basis.
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Linear independence of vectors
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Row and column spaces

Vector Spaces

© The Euclidean space R" is of dimension n.

@ The polynomials 1,x,x?,--- ,x"~1 constitute a basis of the
set of all polynomials P, of degree less than n. Thus P, is of
dimension n.

© The set of all m X n matrices My« is of dimension mn.

© The set of all continuous functions C|a, b] is an infinite
dimensional vector space.
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Vector Spaces

Theorem

Let V' be an n-dimension vector space and let S = {vi,vo, - ,vp}
be a subset of V' consists of n vectors. Then the following
statement for S are equivalent.

Q@ S spans V;
@ S is linearly independent;
© S is a basis for V.
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Proof.

We need to prove that S is linearly independent if and only if
span(S) = V. Suppose S is linearly independent and span(S) # V.
Then there exists v € V such that v & span(S). Since S U {v}
contains n+ 1 vectors, it is linearly dependent by Theorem 4.2.
Thus there exists ¢, ¢, -+ , Cn, Cnt1, NoOt all zero, such that

Vi + cvo + -+ - + ¢V + cpriv = 0.

Now cpt1 = 0 since v ¢ span(S). This implies that

{vi,v2, -+ ,v,} which leads to a contradiction.

Suppose span(S) = V and S is linearly dependent. Then by
Theorem 3.4, there exists a proper subset S’ C S consists of k
vectors, k < n, such that span(S’) = V. By Theorem 4.2, any set
of more than k vectors are linearly dependent. This contradicts to
that V is of dimension n. O
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Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces

Vector Spaces

Let V' be an n-dimension vector space and let S be a subset of V.
Then

@ IfS is linearly independent, then S is contained in a basis for
V;
@ IfS spans V, then S contains a basis for V.
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Subspaces
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@ If span(S) = V, then S is a basis for V. If span(S) # V, then
there exists vi € V such that v; ¢ span(S). Now S U {v;} is
linearly independent. Similarly if span(S U {v1}) # V, there
exists vp € V such that SU {vy,va} is linearly independent.

Vector Spaces

This process may be continued until SU {vi,vo, -+ v}
contains n vectors. Then SU {vy,vp, - ,vg} constitutes a
basis for V.

@ If S is linearly independent, then S is a basis for V. If S is
linearly dependent, then there exists vi € S which is a linear
combination of the remaining vectors in S. After removing v;
from S, the remaining vectors will still span V. This process
may be continued until we obtain a set of linearly independent
vectors consisting of n vectors which consists a basis for V.

L]

Linear Algebra




Definition and Examples

Subspaces

Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces
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Theorem

Let A be an m x n matrix. The set of solutions to the system
Ax=0

form a vector subspace of R". The dimension of the solution space
equals to the number of free variables.

Linear Algebra



Definition and Examples

Subspaces

Linear independence of vectors

Bases and dimension for vector spaces
Row and column spaces
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Find a basis for the solution space of the system

3x1 + 60 — x3 — bx4q 4+ bxs = 0
21 + 4 — x3 — 3x3 + 2x5 = 0
3x1 + 60 — 23 — 4xq + x5 = 0.

Solution: The coefficient matrix A reduces to the echelon form

120 -2 3
001 -1 4
000 O O

The leading variables are xi, x3. The free variables are x, x4, 5.
The solution space is

span{(—2,1,0,0,0)",(2,0,1,1,0)7,(-3,0,—4,0,1)"}.
o
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Let A be an m X n matrix.
@ The null space Null(A) of A is the solution space to Ax = 0.
@ The row space Row(A) of A is the vector subspace of R"
spanned by the m row vectors of A.
© The column space Col(A) of A is the vector subspace of R™
spanned by the n column vectors of A. |
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Vector Spaces

Let R be a row echelon form. Then
© The set of vectors obtained by setting one free variable equal
to 1 and other free variables to be zero constitutes a basis for
Null(R).
@ The set of non-zero rows constitutes a basis for Row(R).
© The set of columns associated with lead variables constitutes
a basis for Col(R)
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Example
Let
1 -3 00 3
0 0 1 0 -2
A= 0 0 01 7
0 0 00 O

Find a basis for Null(A), Row(A) and Col(A).

Solution:
@ The set {(3,1,0,0,0)7,(—3,0,2,—7,1)7} constitutes a basis
for Null(A).

@ The set {(1,-3,0,0,3),(0,0,1,0,-2),(0,0,0,1,7)}
constitutes a basis for Row(A).

© The set {(1,0,0,0)7,(0,1,0,0)7,(0,0,1,0)"} constitutes a
basis for Col(A).

[
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Theorem
Let R be the reduced row echelon form of A. Then

© Null(A) = Null(R).

@ Row(A) = Row(R).

© The column vectors of A associated with the column

containing the leading entries of R constitute a basis for
Col(A).
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Find a basis for Null(A), Row(A) and Col(A) where

—2 3
—4 8
10
—4 7

1
10

N W N
|
o

A O wWN
o
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Vector Spaces

Solution: The reduced row echelon form of A is

1 -2 00 3
0 0 1 0 2
0 0 01 —4
0 0 00 O
Thus
O the set {(2,1,0,0,0)7,(—3,0,—2,4,1)7} constitutes a basis
for Null(A).

@ the set {(1,-2,0,0,3),(0,0,1,0,2),(0,0,0,1, —4)}
constitutes a basis for Row(A).

© the 1st, 3rd and 4th columns contain leading entries.
Therefore the set {(1,2,3,2)7, (3,8,10,7)7, (2,3,6,4)"}
constitutes a basis for Col(A).
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Vector Spaces

Definition

Let A be an m x n matrix. The dimension of
@ the solution space of Ax = 0 is called the nullity of A.
@ the row space is called the row rank of A.

© the column space is called the column rank of A.
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Let A be an m x n matrix. Then the row rank of A is equal to the
column rank of A.

Proof.

Both of them are equal to the number of leading entries of the
reduced row echelon form of A. Ol

| \

V.
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The common value of the row and column rank of the matrix A is
called the rank of A.

Theorem (Rank-Nullity Theorem)

Let A be an m x n matrix. Then

rank(A) + Nullity(A) = n.

Proof.

The nullity of A is equal to the number of free variables of the
reduced row echelon form of A. Now the left hand side is the sum
of the number of leading variables and free variables and is of
course n. L]

| A
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