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System of m linear equations in n unknowns (linear system)
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
. . .

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

.

Matrix form
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1

x2
...

xn

 =


b1

b2
...

bm

 .
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Augmented matrix
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm



Linear Algebra



Linear Systems and Matrices
Vector Spaces

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Definition

An elementary row operation is an operation on a matrix of one
of the following form.

1 Multiply a row by a non-zero constant.

2 Interchange two rows.

3 Replace a row by its sum with a multiple of another row.
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Definition

Two matrices A and B are said to be row equivalent if we can
use elementary row operations to get B from A.

Proposition

If the augmented matrices of two linear systems are row
equivalent, then the two systems are equivalent, i.e., they have the
same solution set.
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Definition

A matrix E is said to be in row echelon form if

1 The first nonzero entry of each row of E is 1.

2 Every row of E that consists entirely of zeros lies beneath
every row that contains a nonzero entry.

3 In each row of E that contains a nonzero entry, the number of
leading zeros is strictly less than that in the preceding row.

Proposition

Any matrix can be transformed into row echelon form by
elementary row operations. This process is called Gaussian
elimination.
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Row echelon form of augmented matrix.

Those variables that correspond to columns containing leading
entries are called leading variables

All the other variables are called free variables.

A system in row echelon form can be solved easily by back
substitution.
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Example

Solve the linear system
x1 + x2 − x3 = 5

2x1 − x2 + 4x3 = −2
x1 − 2x2 + 5x3 = −4

.
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Solution:

 1 1 −1 5
2 −1 4 −2
1 −2 5 −4

 R2 → R2 − 2R1
R3 → R3 − R1−→

 1 1 −2 5
0 −3 6 −12
0 −3 6 −9


R2→−

1
3

R2
−→

 1 1 −2 5
0 1 −2 4
0 −3 6 −9

 R3→R3+3R2−→

 1 1 −2 5
0 1 −2 4
0 0 0 3



The third row of the last matrix corresponds to the equation

0 = 3

which is absurd. Therefore the solution set is empty and the
system is inconsistent. �
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Example

Solve the linear system
x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2

.

Solution:

 1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

 R2 → R2 − R1
R3 → R3 − R1−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 1 2 0


R3→R3−R2−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1



Linear Algebra



Linear Systems and Matrices
Vector Spaces

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Thus the system is equivalent to the following system x1 + x2 + x3 + x4 + x5 = 2
x4 + x5 = 1

x5 = −1
.

The solution of the system is x5 = −1
x4 = 1− x5 = 2
x1 = 2− x2 − x3 − x4 − x5 = 1− x2 − x3

Here x1, x4, x5 are leading variables while x2, x3 are free variables.
Another way of expressing the solution is

(x1, x2, x3, x4, x5) = (1− α− β, α, β, 2,−1), α, β ∈ R.

�
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Definition

A matrix E is said to be in reduced row echelon form (or E is a
reduced row echelon matrix) if it satisfies all the following
properties:

1 It is in row echelon form.

2 Each leading entry of E is the only nonzero entry in its
column.

Proposition

Every matrix is row equivalent to one and only one matrix in
reduced row echelon form.
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Example

Find the reduced row echelon form of the matrix 1 2 1 4
3 8 7 20
2 7 9 23

 .

Solution:

 1 2 1 4
3 8 7 20
2 7 9 23

 R2 → R2 − 3R1
R3 → R3 − 2R1−→

 1 2 1 4
0 2 4 8
0 3 7 15


R2→

1
2

R2
−→

 1 2 1 4
0 1 2 4
0 3 7 15

 R3→R3−3R2−→

 1 2 1 4
0 1 2 4
0 0 1 3



R1→R1−2R2−→

 1 0 −3 −4
0 1 2 4
0 0 1 3

 R1 → R1 + 3R3
R2 → R2 − 2R3−→

 1 0 0 5
0 1 0 −2
0 0 1 3


�
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Example

Solve the linear system
x1 + 2x2 + 3x3 + 4x4 = 5
x1 + 2x2 + 2x3 + 3x4 = 4
x1 + 2x2 + x3 + 2x4 = 3

.
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Solution:

 1 2 3 4 5
1 2 2 3 4
1 2 1 2 3

 R2 → R2 − R1
R3 → R3 − R1−→

 1 2 3 4 5
0 0 −1 −1 −1
0 0 −2 −2 −2


R2→−R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 −2 −2 −2

 R3→R3+2R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 0 0 0


R1→R1−3R2−→

 1 2 0 1 2
0 0 1 1 1
0 0 0 0 0



Now x1, x3 are leading variables while x2, x4 are free variables. The
solution of the system is

(x1, x2, x3, x4) = (2− 2α− β, α, 1− β, β), α, β ∈ R.

�
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Theorem

Let
Ax = b

be a linear system, where A is an m × n matrix. Let R be the
unique m × (n + 1) reduced row echelon matrix of the augmented
matrix (A|b). Then the system has

1 no solution if the last column of R contains a leading entry.

2 unique solution if (1) does not holds and all variables are
leading variables.

3 infinitely many solutions if (1) does not holds and there exists
at least one free variables.
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Theorem

Let A be an n × n matrix. Then homogeneous linear system

Ax = 0

with coefficient matrix A has only trivial solution if and only if A is
row equivalent to the identity matrix I.
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Definition

We define the following operations for matrices.

1 Addition: Let A = [aij ] and B = [bij ] be two m × n matrices. Define

[A + B]ij = aij + bij .

That is 
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

+


b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .
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Definition

2 Scalar multiplication: Let A = [aij ] be an m × n matrix and
c be a scalar. Then

[cA]ij = caij .

That is

c


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
...

...
. . .

...
cam1 cam2 · · · camn

 .
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Definition

3 Matrix multiplication: Let A = [aij ] be an m × n matrix and
B = [bjk ] be an n × r . Then their matrix product AB is an
m × r matrix where

[AB]ik =
n∑

j=1

aij bjk = ai1b1k + ai2b2k + · · ·+ ainbnk .

For example: If A is a 3× 2 matrix and B is a 2× 2 matrix,
then a11 a12

a21 a22

a31 a32

( b11 b12

b21 b22

)
=

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

a31b11 + a32b21 a31b12 + a32b22


is a 3× 2 matrix.
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1 A zero matrix, denoted by 0, is a matrix whose entries are all
zeros.

2 An identity matrix, denoted by I, is a square matrix that has
ones on its principal diagonal and zero elsewhere.
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Theorem (Properties of matrix algebra)

Let A, B and C be matrices of appropriate sizes to make the
indicated operations possible and a, b be real numbers, then
following identities hold.

1 A + B = B + A

2 A + (B + C) = (A + B) + C

3 A + 0 = 0 + A = A

4 a(A + B) = aA + aB

5 (a + b)A = aA + bA

6 a(bA) = (ab)A

7 a(AB) = (aA)B = A(aB)

8 A(BC) = (AB)C

9 A(B + C) = AB + AC

10 (A + B)C = AC + BC

11 A0 = 0A = 0

12 AI = IA = A
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Proof.

We only prove (8) and the rest are obvious. Let A = [aij ] be
m × n, B = [bjk ] be n × r and C = [ckl ] be r × s matrices. Then

[(AB)C]il =
r∑

k=1

[AB]ik ckl

=
r∑

k=1

(
n∑

j=1

aij bjk

)
ckl

=
n∑

j=1

aij

(
r∑

k=1

bjk ckl

)

=
n∑

j=1

aij [BC]jl

= [A(BC)]il
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Remarks:

1 In general, AB 6= BA. For example:

A =

(
1 1
0 1

)
and B =

(
1 0
0 2

)
Then

AB =

(
1 1
0 1

)(
1 0
0 2

)
=

(
1 2
0 2

)
BA =

(
1 0
0 2

)(
1 1
0 1

)
=

(
1 1
0 2

)
2 AB = 0 does not implies that A = 0 or B = 0. For example:

A =

(
1 0
0 0

)
6= 0 and B =

(
0 0
0 1

)
6= 0

But

AB =

(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.
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Definition

Let A = [aij ] be an m × n matrix. Then the transpose of A is the
n ×m matrix defined by interchanging rows and columns and is
denoted by AT , i.e.,

[AT ]ji = aij for 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Example

1

(
2 0 5
4 −1 7

)T

=

 2 4
0 −1
5 7


2

 7 −2 6
1 2 3
5 0 4

T

=

 7 1 5
−2 2 0
6 3 4


�Linear Algebra



Linear Systems and Matrices
Vector Spaces

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Theorem (Properties of transpose)

For any m × n matrices A and B,

1 (AT )T = A;

2 (A + B)T = AT + BT ;

3 (cA)T = cAT ;

4 (AB)T = BT AT .
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Definition

A square matrix A is said to be invertible, if there exists a matrix
B such that

AB = BA = I.

We say that B is a (multiplicative) inverse of A.
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Theorem

If A is invertible, then the inverse of A is unique.

Proof.

Suppose B1 and B2 are multiplicative inverses of A. Then

B2 = B2I = B2(AB1) = (B2A)B1 = IB1 = B1.

The unique inverse of A is denoted by A−1.
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Proposition

The 2× 2 matrix

A =

(
a b
c d

)
is invertible if and only if ad − bc 6= 0, in which case

A−1 =
1

ad − bc

(
d −b
−c a

)
.
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Proposition

Let A and B be two invertible n × n matrices.

1 A−1 is invertible and (A−1)−1 = A;

2 For any nonnegative integer k, Ak is invertible and
(Ak )−1 = (A−1)k ;

3 The product AB is invertible and

(AB)−1 = B−1A−1;

4 AT is invertible and

(AT )−1 = (A−1)T .
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Proof.

We prove (3) only.

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Therefore AB is invertible and B−1A−1 is the inverse of AB.
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Theorem

If the n × n matrix A is invertible, then for any n-vector b the
system Ax = b has the unique solution x = A−1b.
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Example

Solve the system {
4x1 + 6x2 = 6
5x1 + 9x2 = 18

.

Solution: Let A =

(
4 6
5 9

)
. Then

A−1 =
1

(4)(9)− (5)(6)

(
9 −6
−5 4

)
=

(
3
2
−1

− 5
6

2
3

)
Thus the solution is

x = A−1b =

(
3
2
−1

− 5
6

2
3

)(
6
18

)
=

(
−9
7

)
Therefore (x1, x2) = (−9, 7). �
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Definition

A square matrix E is called an elementary matrix if it can be
obtained by performing a single elementary row operation on I.

Proposition

Let E be the elementary matrix obtained by performing a certain
elementary row operation on I. Then the result of performing the
same elementary row operation on a matrix A is EA.

Proposition

Every elementary matrix is invertible.
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Example
Examples of elementary matrices associated to elementary row operations and their inverses.

Elementary
row operation

Interchanging
two rows

Multiplying a row
by a nonzero constant

Adding a multiple of
a row to another row

Elementary matrix

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0
0 0 3

  1 0 −2
0 1 0
0 0 1



Inverse

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0

0 0 1
3

  1 0 2
0 1 0
0 0 1


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Theorem

Let A be a square matrix. Then the following statements are
equivalent.

1 A is invertible

2 A is row equivalent to I

3 A is a product of elementary matrices

Proof.

It follows easily from the fact that an n × n reduced row echelon
matrix is invertible if and only if it is the identity matrix I.
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Let A be an invertible matrix. Then the above theorem tells us
that there exists elementary matrices E1,E2, · · · ,Ek such that

EkEk−1 · · ·E2E1A = I.

Multiplying both sides by (E1)−1(E2)−1 · · · (Ek−1)−1(Ek )−1 we
have

A = (E1)−1(E2)−1 · · · (Ek−1)−1(Ek )−1.

Therefore
A−1 = EkEk−1 · · ·E2E1

by Proposition 3.4.
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Theorem

Let A be a square matrix. Suppose we can preform elementary row
operation to the augmented matrix (A|I) to obtain a matrix of the
form (I|E), then A−1 = E.

Proof.

Let E1,E2, · · · ,Ek be elementary matrices such that

EkEk−1 · · ·E2E1(A|I) = (I|E).

Then the multiplication on the left submatrix gives

EkEk−1 · · ·E2E1A = I

and the multiplication of the right submatrix gives

E = EkEk−1 · · ·E2E1I = A−1.
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Example

Find the inverse of  4 3 2
5 6 3
3 5 2


Solution:  4 3 2

5 6 3
3 5 2

1 0 0
0 1 0
0 0 1


R1→R1−R3−→

 1 −2 0
5 6 3
3 5 2

1 0 −1
0 1 0
0 0 1


R2 → R2 − 5R1
R3 → R3 − 3R1−→

 1 −2 0
0 16 3
0 11 2

1 0 −1
−5 1 5
−3 0 4


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R2→R2−R3−→

 1 −2 0
0 5 1
0 11 2

1 0 −1
−2 1 1
−3 0 4


R3→R3−2R2−→

 1 −2 0
0 5 1
0 1 0

1 0 −1
−2 1 1
1 −2 2


R2↔R3−→

 1 −2 0
0 1 0
0 5 1

1 0 −1
1 −2 2
−2 1 1


R3→R3−5R2−→

 1 −2 0
0 1 0
0 0 1

1 0 −1
1 −2 2
−7 11 −9


R1→R1+2R2−→

 1 0 0
0 1 0
0 0 1

3 −4 3
1 −2 2
−7 11 −9


Therefore

A−1 =

 3 −4 3
1 −2 2
−7 11 −9

 .

�
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Example

Find a 3× 2 matrix X such that 1 2 3
2 1 2
1 3 4

X =

 0 −3
−1 4
2 1

 .

Solution:  1 2 3
2 1 2
1 3 4

0 −3
−1 4
2 1


R2 → R2 − 5R1

R3 → R3 − 3R1
−→

 1 2 3
0 −3 −4
0 1 1

0 −3
−1 10
2 4


R2↔R3−→

 1 2 3
0 1 1
0 −3 −4

0 −3
2 4
−1 10


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R3→R3+3R2−→

 1 2 3
0 1 1
0 0 −1

0 −3
2 4
5 22


R3 → −R3
−→

 1 2 3
0 1 1
0 0 1

0 −3
2 4
−5 −22


R1 → R1 − 3R3

R2 → R2 − R3
−→

 1 2 0
0 1 0
0 5 1

15 63
7 26
−5 −22


R1 → R1 − 2R2

−→

 1 0 0
0 1 0
0 0 1

1 11
7 26
−5 −22


Therefore we may take

X =

 1 11
7 26
−5 −22

 .
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Definition

Let A = [aij ] be an n × n matrix.

1 The ij-th minor of A is the determinant Mij of the
(n − 1)× (n − 1) submatrix that remains after deleting the
i-th row and the j-th column of A.

2 The ij-th cofactor of A is defined by

Aij = (−1)i+j Mij .
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Definition

Let A = [aij ] be an n× n matrix. The determinant det(A) of A is
defined inductively as follow.

1 If n = 1, then det(A) = a11.

2 If n > 1, then

det(A) =
n∑

k=1

a1k A1k = a11A11 + a12A12 + · · ·+ a1nA1n,

where Aij is the ij-th cofactor of A.
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Example

When n = 1, 2 or 3, we have the following.

1 The determinant of a 1× 1 matrix is

|a11| = a11

2 The determinant of a 2× 2 matrix is∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

3 The determinant of a 3× 3 matrix is∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
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Example ∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣
= 4

∣∣∣∣ 2 0 1
0 0 3
1 2 1

∣∣∣∣− 3

∣∣∣∣ 3 0 1
1 0 3
0 2 1

∣∣∣∣+ 0

∣∣∣∣ 3 2 1
1 0 3
0 1 1

∣∣∣∣− 1

∣∣∣∣ 3 2 0
1 0 0
0 1 2

∣∣∣∣
= 4

(
2

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 0 3
1 1

∣∣∣∣+ 1

∣∣∣∣ 0 0
1 2

∣∣∣∣)
−3

(
3

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 1 3
0 1

∣∣∣∣+ 1

∣∣∣∣ 1 0
0 2

∣∣∣∣)
−
(

3

∣∣∣∣ 0 0
1 2

∣∣∣∣− 2

∣∣∣∣ 1 0
0 2

∣∣∣∣+ 0

∣∣∣∣ 1 0
0 1

∣∣∣∣)
= 4 (2(−6))− 3 (3(−6) + 1(2))− (−2(2))

= 4
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Theorem

Let A = [aij ] be an n × n matrix. Then

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n),

where Sn is the set of all permutations of {1, 2, · · · , n} and

sign(σ) =

{
1 if σ is an even permutation,
−1 if σ is an odd permutation.
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1 There are n! number of terms for an n × n determinant.

2 Here we write down the 4! = 24 terms of a 4× 4 determinant.∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
=

a11a22a33a44 − a11a22a34a43 − a11a23a32a44 + a11a23a34a42

+a11a24a32a43 − a11a24a33a42 − a12a21a33a44 + a12a21a34a43

+a12a23a31a44 − a12a23a34a41 − a12a24a31a43 + a12a24a33a41

+a13a21a32a44 − a13a21a34a42 − a13a22a31a44 + a13a22a34a41

+a13a24a31a42 − a13a24a32a41 − a14a21a32a43 + a14a21a33a42

+a14a22a31a43 − a14a22a33a41 − a14a23a31a42 + a14a23a32a41
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Theorem

The determinant of an n × n matrix A = [aij ] can be obtained by
expansion along any row or column, i.e., for any 1 ≤ i ≤ n, we have

det(A) = ai1Ail + ai2Ai2 + · · ·+ ainAin

and for any 1 ≤ j ≤ n, we have

det(A) = a1j A1j + a2j A2j + · · ·+ anj Anj .
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Example

We can expand the determinant along the third column.∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
4 3 1
3 2 1
1 0 3

∣∣∣∣∣∣
= −2

(
−3

∣∣∣∣ 3 1
1 3

∣∣∣∣+ 2

∣∣∣∣ 4 1
1 3

∣∣∣∣)
= −2 (−3(8) + 2(11))

= 4
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Proposition

Properties of determinant.

1 det(I) = 1;

2 Suppose that the matrices A1, A2 and B are identical except
for their i -th row (or column) and that the i-th row (or
column) of B is the sum of the i-th row (or column) of A1

and A2, then det(B) = det(A1) + det(A2);

3 If B is obtained from A by multiplying a single row (or
column) of A by the constant k, then det(B) = k det(A);

4 If B is obtained from A by interchanging two rows (or
columns), then det(B) = − det(A);
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Proposition

5 If B is obtained from A by adding a constant multiple of one row
(or column) of A to another row (or column) of A, then
det(B) = det(A);

6 If two rows (or columns) of A are identical, then det(A) = 0;

7 If A has a row (or column) consisting entirely of zeros, then
det(A) = 0;

8 det(AT ) = det(A);

9 If A is a triangular matrix, then det(A) is the product of the
diagonal elements of A;

10 det(AB) = det(A) det(B).
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Example

∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 6 −3 3
1 −2 4 1
0 0 2 −1
0 3 5 4

∣∣∣∣∣∣
(

R1 → R1 − 2R2

R3 → R3 + R2

R4 → R4 + 2R2

)

= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

∣∣∣∣∣∣
2 −1 1
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

(
2

∣∣∣∣ −1 1
5 4

∣∣∣∣+ 3

∣∣∣∣ −1 1
2 −1

∣∣∣∣)
= −69
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Example

∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 6 −3 3
1 0 0 0
−1 0 2 −1
−2 3 5 4

∣∣∣∣∣∣
(

C2 → C2 + 2C1

C3 → C3 − 4C1

C4 → C4 − C1

)

= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 0 3
2 1 −1
−5 9 4

∣∣∣∣∣∣
(

C1 → C1 − 2C3

C2 → C2 + C3

)

= −3

∣∣∣∣ 2 1
−5 9

∣∣∣∣
= −69
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Example

Let α1, α2, · · · , αn be real numbers and

A =


1 α1 α2 · · · αn

1 x α2 · · · αn

1 α1 x · · · αn

...
...

...
. . .

...
1 α1 α2 · · · x

 .

Show that
det(A) = (x − α1)(x − α2) · · · (x − αn).

Solution: Note that A is an (n + 1)× (n + 1) matrix. For simplicity we assume that
α1, α2, · · · , αn are distinct. Observe that we have the following 3 facts.

1 det(A) is a polynomial of degree n in x ;

2 det(A) = 0 when x = αi for some i ;

3 The coefficient of xn of det(A) is 1.

Then the equality follows by the factor theorem. �
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Example

The Vandermonde determinant is defined as

V (x1, x2, · · · , xn) =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
.

Show that
V (x1, x2, · · · , xn) =

∏
1≤i<j≤n

(xj − xi ).

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.

1 V (x1, x2, · · · , xn) is a polynomial of degree n(n − 1)/2 in x1, x2, · · · , xn;

2 For any i 6= j , V (x1, x2, · · · , xn) = 0 when xi = xj ;

3 The coefficient of x2x2
3 · · · x

n−1
n of V (x1, x2, · · · , xn) is 1.
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Lemma

Let A = [aij ] be an n × n matrix and E be an n × n elementary
matrix. Then

det(EA) = det(E) det(A).

Definition

Let A be a square matrix. We say that A is singular if the system
Ax = 0 has non-trivial solution. A square matrix is nonsingular if
it is not singular.
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Theorem

The following properties of an n × n matrix A are equivalent.

1 A is nonsingular, i.e., the system Ax = 0 has only trivial
solution x = 0.

2 A is invertible, i.e., A−1 exists.

3 det(A) 6= 0.

4 A is row equivalent to I.

5 For any n-column vector b, the system Ax = b has a unique
solution.

6 For any n-column vector b, the system Ax = b has a solution.
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Proof.

We prove (3)⇔(4) and leave the rest as an exercise. Multiply
elementary matrices E1,E2, · · · ,Ek to A so that

R = EkEk−1 · · ·E1A

is in reduced row echelon form. Then by the lemma above, we have

det(R) = det(Ek ) det(Ek−1) · · · det(E1) det(A).

Since determinant of elementary matrices are always nonzero, we
have det(A) is nonzero if and only if det(R) is nonzero. It is easy
to see that the determinant of a reduced row echelon matrix is
nonzero if and only if it is the identity matrix I.
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Theorem

Let A and B be two n × n matrices. Then

det(AB) = det(A) det(B).

Proof.

If A is not invertible, then AB is not invertible and
det(AB) = 0 = det(A) det(B). If A is invertible, then there exists
elementary matrices E1,E2, · · · ,Ek such that EkEk−1 · · ·E1 = A. Hence

det(AB) = det(EkEk−1 · · ·E1B)

= det(Ek ) det(Ek−1) · · · det(E1) det(B)

= det(EkEk−1 · · ·E1) det(B)

= det(A) det(B).
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Definition

Let A be a square matrix. The adjoint matrix of A is

adjA = [Aij ]
T ,

where Aij is the ij-th cofactor of A. In other words,

[adjA]ij = Aji .

Linear Algebra



Linear Systems and Matrices
Vector Spaces

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Theorem

Let A be a square matrix. Then

AadjA = (adjA)A = det(A)I,

where adjA is the adjoint matrix. In particular if A is invertible,
then

A−1 =
1

det(A)
adjA.
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Proof.

The second statement follows easily from the first. For the first
statement, we have

[AadjA]ij =
n∑

l=1

ail [adjA]lj

=
n∑

l=1

ail Ajl

= δij det(A)

where

δij =

{
1, i = j
0, i 6= j

.

Therefore AadjA = det(A)I and similarly (adjA)A = det(A)I.
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Example

Let A =

 4 3 2
5 6 3
3 5 2

. We have

det(A) = 4

∣∣∣∣ 6 3
5 2

∣∣∣∣− 3

∣∣∣∣ 5 3
3 2

∣∣∣∣+ 2

∣∣∣∣ 5 6
3 5

∣∣∣∣ = 4(−3)− 3(1) + 2(7) = −1,

adjA =



∣∣∣∣ 6 3
5 2

∣∣∣∣ −
∣∣∣∣ 3 2

5 2

∣∣∣∣ ∣∣∣∣ 3 2
6 3

∣∣∣∣
−
∣∣∣∣ 5 3

3 2

∣∣∣∣ ∣∣∣∣ 4 2
3 2

∣∣∣∣ −
∣∣∣∣ 4 2

5 3

∣∣∣∣∣∣∣∣ 5 6
3 5

∣∣∣∣ −
∣∣∣∣ 4 3

3 5

∣∣∣∣ ∣∣∣∣ 4 3
5 6

∣∣∣∣


=

 −3 4 −3
−1 2 −2
7 −11 9

 .

Therefore

A−1 =
1

−1

 −3 4 −3
−1 2 −2
7 −11 9

 =

 3 −4 3
1 −2 2
−7 11 −9

 .
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Theorem (Cramer’s rule)

Consider the n × n linear system Ax = b, with

A =
[

a1 a2 · · · an

]
.

If det(A) 6= 0, then the i-th entry of the unique solution
x = (x1, x2, · · · , xn) is

xi = det(A)−1 det(
[

a1 · · · ai−1 b ai+1 · · · an

]
),

where the matrix in the last factor is obtained by replacing the i-th
column of A by b.
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Proof.

xi = [A−1b]i

=
1

det(A)
[(adjA)b]i

=
1

det(A)

n∑
l=1

Ali bl

=
1

det(A)

∣∣∣∣∣∣∣∣∣
a11 · · · b1 · · · a1n

a21 · · · b2 · · · a2n
...

. . .
...

. . .
...

an1 · · · bn · · · ann

∣∣∣∣∣∣∣∣∣
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Example

Use Cramer’s rule to solve the linear system
x1 + 4x2 + 5x3 = 2

4x1 + 2x2 + 5x3 = 3
−3x1 + 3x2 − x3 = 1

.

Solution: Let A =

 1 4 5
4 2 5
−3 3 −1

.

det(A) = 1

∣∣∣∣ 2 5
3 −1

∣∣∣∣− 4

∣∣∣∣ 4 5
−3 −1

∣∣∣∣+ 5

∣∣∣∣ 4 2
−3 3

∣∣∣∣
= 1(−17)− 4(11) + 5(18)
= 29.
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Thus by Cramer’s rule,

x1 =
1

29

∣∣∣∣∣∣
2 4 5
3 2 5
1 3 −1

∣∣∣∣∣∣ =
33

29

x2 =
1

29

∣∣∣∣∣∣
1 2 5
4 3 5
−3 1 −1

∣∣∣∣∣∣ =
35

29

x3 =
1

29

∣∣∣∣∣∣
1 4 2
4 2 3
−3 3 1

∣∣∣∣∣∣ = −23

29
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Theorem

Let n be a non-negative integer, and (x0, y0), (x1, y1), · · · , (xn, yn)
be n + 1 points in R2 such that xi 6= xj for any i 6= j . Then there
exists unique polynomial

p(x) = a0 + a1x + a2x2 + · · ·+ anxn,

of degree at most n such that p(xi ) = yi for all 0 ≤ i ≤ n. The
coefficients of p(x) satisfy the linear system

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n




a0

a1
...

an

 =


y0

y1
...

yn

 .
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Theorem

Moreover, we can write down the polynomial function y = p(x)
directly as ∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn y
1 x0 x2

0 · · · xn
0 y0

1 x1 x2
1 · · · xn

1 y1

...
...

...
. . .

...
...

1 xn x2
n · · · xn

n yn

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Proof.

Expanding the determinant, one sees that the equation is of the
form y = p(x) where p(x) is a polynomial of degree at most n.
Observe that the determinant is zero when (x , y) = (xi , yi ) for
some 0 ≤ i ≤ n since two rows would be identical in this case.
Now it is well known that such polynomial is unique.
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Example

Find the equation of straight line passes through the points (x0, y0)
and (x1, y1).

Solution: The equation of the required straight line is∣∣∣∣∣∣
1 x y
1 x0 y0

1 x1 y1

∣∣∣∣∣∣ = 0

(y0 − y1)x + (x1 − x0)y + (x0y1 − x1y0) = 0
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Example

Find the cubic polynomial that interpolates the data points
(−1, 4), (1, 2), (2, 1) and (3, 16).

Solution: The required equation is∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
1 1 1 1 2
1 2 4 8 1
1 3 9 27 16

∣∣∣∣∣∣∣∣∣∣
= 0
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∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
0 2 0 2 −2
0 3 3 9 −3
0 4 8 28 12

∣∣∣∣∣∣∣∣∣∣
= 0

...∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 0 0 0 7
0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣
= 0

−7 + 3x + 4x2 − 2x3 + y = 0

y = 7− 3x − 4x2 + 2x3
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Example

Find the equation of the circle determined by the points (−1, 5), (5,−3) and (6, 4).

Solution: The equation of the required circle is∣∣∣∣∣∣∣∣
x2 + y2 x y 1

(−1)2 + 52 −1 5 1
52 + (−3)2 5 −3 1

62 + 42 6 4 1

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
x2 + y2 x y 1

26 −1 5 1
34 5 −3 1
52 6 4 1

∣∣∣∣∣∣∣∣ = 0

...∣∣∣∣∣∣∣∣
x2 + y2 x y 1

20 0 0 1
4 1 0 0
2 0 1 0

∣∣∣∣∣∣∣∣ = 0

x2 + y2 − 4x − 2y − 20 = 0
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Definition

A vector space over R consists of a set V and two operations
addition and scalar multiplication such that

1 u + v = u + v, for any u, v ∈ V ;

2 (u + v) + w = u + (v + w), for any u, v,w ∈ V ;

3 There exists 0 ∈ V such that u + 0 = 0 + u = u, for any
u ∈ V ;

4 For any u ∈ V , there exists −u ∈ V such that u + (−u) = 0;

5 a(u + v) = au + av, for any a ∈ R and u, v ∈ V ;

6 (a + b)u = au + bu, for any a, b ∈ R and u ∈ V ;

7 a(bu) = (ab)u, for any a, b ∈ R and u ∈ V ;

8 (1)u = u, for any u ∈ V .
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Example (Euclidean Space)

The set

Rn =




x1

x2

...
xn

 : xi ∈ R

 .

with 
x1

x2

...
xn

+


y1

y2

...
yn

 =


x1 + y1

x2 + y2

...
xn + yn

 ,

and

a


x1

x2

...
xn

 =


ax1

ax2

...
axn

 .
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Example (Matrix Space)

The set of all m × n matrices

Mm×n = {A : A is an m × n matrix.}.

with usual matrix addition and scaler multiplication.

Example (Space of continuous functions)

The set of all continuous functions

C [a, b] = {f : f is a continuous function on [a, b].}

on [a, b] with

(f + g)(x) = f (x) + g(x)

(af )(x) = a(f (x))
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Example (Space of polynomials over R)

The set of all polynomial

Pn = {a0 + a1x + · · ·+ an−1xn−1 : a0, a1, · · · , an−1 ∈ R.}

over R of degree less than n with

(a0 + a1x + · · ·+ an−1xn−1) + (b0 + b1x + · · ·+ bn−1xn−1)

= (a0 + b0) + (a1 + b1)x + · · ·+ (an−1 + bn−1)xn−1

and

a(a0 + a1x + · · ·+ an−1xn−1) = aa0 + aa1x + · · ·+ aan−1xn−1.
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Definition

Let W be a nonempty subset of the vector space V . Then W is a
subspace of V if W itself is a vector space with the operations of
addition and scalars multiplication defined in V .

Proposition

A nonempty subset W of a vector space V is a subspace of V if
and only if it satisfies the following two conditions:

1 If u and v are vectors in W , then u + v is also in W .

2 If u is in W and c is a scalar, then cu is also in W .
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Example

In the following examples, W is a vector subspace of V :

1 V is any vector space; W = V or {0}.
2 V = Rn;

W = {(x1, x2, · · · , xn)T ∈ V : a1x1 + a2x2 + · · ·+ anxn = 0},
where a1, a2, · · · , an are fixed real numbers.

3 V = M2×2; W = {A = [aij ] ∈ V : a11 + a22 = 0}.
4 V is the set al all continuous functions C [a, b] on [a, b];

W = {f (x) ∈ V : f (a) = f (b) = 0}.
5 V is the set of all polynomials Pn of degree less than n;

W = {p(x) ∈ V : p(0) = 0}.
6 V is the set of all polynomials Pn of degree less than n;

W = {p(x) ∈ V : p′(0) = 0}.
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Example

In the following examples, W is not a vector subspace of V :

1 V = R2; W = {(x1, x2)T ∈ V : x1 = 1}.
2 V = Rn; W = {(x1, x2, · · · , xn)T ∈ V : x1x2 = 0}.
3 V = M2×2; W = {A ∈ V : det(A) = 0}.

Example

Let A ∈ Mm×n, then the solution set of the homogeneous linear
system

Ax = 0

is a subspace of Rn. This subspace if called the solution space of
the system.

Linear Algebra



Linear Systems and Matrices
Vector Spaces

Definition and Examples
Subspaces
Linear independence of vectors
Bases and dimension for vector spaces
Row and column spaces

Proposition

Let U and W be two subspaces of a vector space V , then

1 U ∩W = {x ∈ V : x ∈ U and x ∈W } is subspace of V .

2 U + W = {u + w ∈ V : u ∈ U and w ∈W } is subspace of V .

3 U ∪W = {x ∈ V : x ∈ U or x ∈W } is a subspace of V if
and only if U ⊂W or W ⊂ U.
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Definition

Let v1, v2, · · · , vk ∈ V . The linear combination of v1, v2, · · · , vk is a
vector in V of the form

c1v1 + c2v2 + · · ·+ ckvk ., c1, c2, · · · , cn ∈ R.

The span of v1, v2, · · · , vk is the set of all linear combination of
v1, v2, · · · , vk and is denoted by span{v1, v2, · · · , vk}. If W is a subspace
of V and span{v1, v2, · · · , vk} = W , then we say that v1, v2, · · · , vk is a
spanning set of W or v1, v2, · · · , vk span the subspace W .

Proposition

Let v1, v2, · · · , vk ∈ V . Then

span{v1, v2, · · · , vk}

is a subspace of V .
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Example

Let V = R3.

1 If v1 = (1, 0, 0)T and v2 = (0, 1, 0)T , then
span{v1, v2} = {(α, β, 0)T : α, β ∈ R}.

2 If v1 = (1, 0, 0)T , v2 = (0, 1, 0)T and v3 = (0, 0, 1)T , then
span{v1, v2, v3} = V .

3 If v1 = (2, 0, 1)T and v2 = (0, 1,−3)T , then
span{v1, v2} = {(2α, β, α− 3β)T : α, β ∈ R}.

4 If v1 = (1,−1, 0)T , v2 = (0, 1,−1)T and v3 = (−1, 0, 1)T ,
then
span{v1, v2, v3} = {(x1, x2, x3)T : x1 + x2 + x3 = 0}.
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Example

Let V = P3 be the set of all polynomial of degree less than 3.

1 If v1 = x and v2 = x2, then
span{v1, v2} = {p(x) ∈ V : p(0) = 0}.

2 If v1 = 1, v2 = 3x − 2 and v3 = 2x + 1, then
span{v1, v2, v3} = span{v1, v2} = P2.

3 If v1 = 1− x2, v2 = x + 2 and v3 = x2, then 1 = v1 + v3,
x = −2v1 + v2 − 2v3 and x2 = v3. Thus span{v1, v2, v3}
contains span{1, x , x2} = P3. Therefore
span{v1, v2, v3} = P3.
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Example

Let w = (2,−6, 3)T ∈ R3, v1 = (1,−2,−1)T and
v2 = (3,−5, 4)T . Determine whether w ∈ span{v1, v2}.

Solution: Write

c1

 1
−2
−1

+ c2

 3
−5
4

 =

 2
−6
3

 ,

that is  1 3
−2 −5
−1 4

( c1

c2

)
=

 2
−6
3

 .
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The augmented matrix  1 3 2
−2 −5 −6
−1 4 3


can be reduced by elementary row operations to echelon form 1 3 2

0 1 −2
0 0 19

 .

Thus the system is inconsistent. Therefore w is not a linear
combination of v1 and v2. �

Linear Algebra



Linear Systems and Matrices
Vector Spaces

Definition and Examples
Subspaces
Linear independence of vectors
Bases and dimension for vector spaces
Row and column spaces

Example

Let w = (−7, 7, 11)T ∈ R3, v1 = (1, 2, 1)T , v2 = (−4,−1, 2)T and
v3 = (−3, 1, 3)T . Express w as a linear combination of v1, v2 and
v3.

Solution: Write

c1

 1
2
1

+ c2

 −4
−1
2

+ c3

 −3
1
3

 =

 −7
7

11

 ,

that is  1 −4 −3
2 −1 1
1 2 3

 c1

c2

c3

 =

 −7
7

11

 .
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The augmented matrix 1 −4 −3 −7
2 −1 1 7
1 2 3 11


can be reduced by elementary row operations to echelon form 1 0 1 5

0 1 1 3
0 0 0 0

 .

The system has more than one solution. For example we can write

w = 5v1 + 3v2,

or
w = 3v1 + v2 + 2v3.

�
Linear Algebra



Linear Systems and Matrices
Vector Spaces

Definition and Examples
Subspaces
Linear independence of vectors
Bases and dimension for vector spaces
Row and column spaces

Example

Let v1 = (1,−1, 0)T , v2 = (0, 1,−1)T and v3 = (−1, 0, 1)T .
Observe that

1 one of the vectors is a linear combination of the other. For
example

v3 = −v1 − v2.

2 span{v1, v2, v3} contains a smaller spanning set. For example

span{v1, v2} = span{v1, v2, v3}.

3 there exists numbers c1, c2, c3 ∈ R, not all zero, such that
c1v1 + c2v2 + c3v3 = 0. For example

v1 + v2 + v3 = 0.
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Definition

The vectors v1, v2, · · · , vk in a vector space V are said be be
linearly independent if the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has only the trivial solution c1 = c2 = · · · = ck = 0. The vectors
v1, v2, · · · , vk are said be be linearly dependent if they are not
linearly independent.
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Theorem

Let V be a vector space and v1, v2, · · · , vk ∈ V . Then the
following statements are equivalent.

1 None of the vectors is a linear combination of the other
vectors.

2 There does not exists a smaller spanning set of
span{v1, v2, · · · , vk}.

3 Every vector in span{v1, v2, · · · , vk} can be expressed in only
one way as a linear combination of v1, v2, · · · , vk .

4 The vectors v1, v2, · · · , vk are linear independent.
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Example

The standard unit vectors

e1 = (1, 0, 0, · · · , 0)T

e2 = (0, 1, 0, · · · , 0)T

...

en = (0, 0, 0, · · · , 1)T

are linearly independent in Rn.
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Example

Let v1 = (1, 2, 2, 1)T , v2 = (2, 3, 4, 1)T , v3 = (3, 8, 7, 5)T be vectors in
R4. Write the equation c1v1 + c2v2 + c3v3 = 0 as the system

c1 + 2c2 + 3c3 = 0
2c1 + 3c2 + 8c3 = 0
2c1 + 4c2 + 7c3 = 0
c1 + c2 + 5c3 = 0

.

The augmented matrix of the system reduces to the echelon form
1 2 3 0
0 1 −2 0
0 0 1 0
0 0 0 0

 .

Thus the only solution is c1 = c2 = c3 = 0. Therefore v1, v2, v3 are
linearly independent.
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Example

Let v1 = (2, 1, 3)T , v2 = (5,−2, 4)T , v3 = (3, 8,−6)T and
v4 = (2, 7,−4)T be vectors in R3. Write the equation
c1v1 + c2v2 + c3v3 + c4v4 = 0 as the system

c1 + 5c2 + 3c3 + 2c4 = 0
c1 − 2c2 + 8c3 + 7c4 = 0

3c1 + 4c2 − 6c3 − 4c4 = 0
.

Because there are more unknowns than equations, thus it has a
nontrivial solution. Therefore v1, v2, v3, v4 are linearly dependent.
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Theorem

1 Two nonzero vectors v1, v2 ∈ V are linearly dependent if and
only if they are proportional, i.e., there exists c ∈ R such that
v2 = cv1.

2 If one of the vectors of v1, v2, · · · , vk ∈ V is zero, then
v1, v2, · · · , vk are linearly dependent.

3 Let v1, v2, · · · , vn be n vectors in Rn and

A = [v1 v2 · · · vn]

be the n × n matrix having them as its column vectors. Then
v1, v2, · · · , vn are linearly independent if and only if
det(A) 6= 0.

4 Let v1, v2, · · · , vk be k vectors in Rn, with k > n, then
v1, v2, · · · , vk are linearly dependent.
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Proof.

1 Obvious.

2 We may assume v1 = 0. Then

1 · v1 + 0 · v2 + · · ·+ 0 · vk = 0.

Therefore v1, v2, · · · , vk are linearly dependent.

3 The vectors v1, v2, · · · , vn are linearly independent
⇔ The system Ax = 0 has only trivial solution.
⇔ A is nonsingular
⇔ det(A) 6= 0.

4 Since the system
c1v1 + c2v2 + · · ·+ ck vk = 0

has more unknown than number of equations, it must have nontrivial solution
for c1, c2, · · · , ck . Therefore v1, v2, · · · , vn are linearly dependent.
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Definition

A set S of vectors in a vector space V is called a basis for V
provided that

1 the vectors in S are linearly independent, and

2 the vectors in S span V .
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Example

1 The vectors

e1 = (1, 0, 0, · · · , 0)T

e2 = (0, 1, 0, · · · , 0)T

...

en = (0, 0, 0, · · · , 1)T

constitute a basis for Rn and is called the standard basis for
Rn.

2 The vectors v1 = (1, 1, 1)T , v2 = (0, 1, 1)T and
v3 = (2, 0, 1)T constitute a basis for R3.
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Theorem

If V = span{v1, v2, · · · , vn}, then any collection of m vectors in V ,
with m > n, are linearly dependent.
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Proof

Let u1,u2, · · · ,um ∈ V , m > n. Then we can write

u1 = a11v1 + a12v2 + · · ·+ a1nvn

u2 = a21v1 + a22v2 + · · ·+ a2nvn

... =
...

um = am1v1 + am2v2 + · · ·+ amnvn.

We have

c1u1 + c2u2 + · · ·+ cmum =
m∑

i=1

ci

n∑
j=1

aij vj


=

n∑
j=1

(
m∑

i=1

ci aij

)
vj
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Proof.

Consider the system
a11c1 + a21c2 + · · · + am1cm = 0
a12c1 + a22c2 + · · · + am2cm = 0

...
...

. . .
... =

...
a1nx1 + a2nc2 + · · · + amncm = 0

.

Since the number of unknown is more than the number of equations,
there exists nontrivial solution for c1, c2, · · · , cm and

c1u1 + c2u2 + · · ·+ cmum = 0.

Therefore the vectors u1,u2, · · · ,um are linearly dependent.
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Theorem

Any two bases for a vector space consist of the same number of
vectors.

Proof.

Let {u1,u2, · · · ,um} and {v1, v2, · · · , vn} be two bases for V .
Since V = span{v1, v2, · · · , vn} and {u1,u2, · · · ,um} are linearly
independent, we have m ≤ n by Theorem 4.2. Similarly, we have
n ≤ m.
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Definition

The dimension of a vector space V is the number of vectors of a
finite basis of V . We say that V is of dimension n (or V is an
n-dimensional vector space) if V has a basis consisting of n
vectors. We say that V is an infinite dimensional vector space if
it does not have a finite basis.
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Example

1 The Euclidean space Rn is of dimension n.

2 The polynomials 1, x , x2, · · · , xn−1 constitute a basis of the
set of all polynomials Pn of degree less than n. Thus Pn is of
dimension n.

3 The set of all m × n matrices Mm×n is of dimension mn.

4 The set of all continuous functions C [a, b] is an infinite
dimensional vector space.

Linear Algebra



Linear Systems and Matrices
Vector Spaces

Definition and Examples
Subspaces
Linear independence of vectors
Bases and dimension for vector spaces
Row and column spaces

Theorem

Let V be an n-dimension vector space and let S = {v1, v2, · · · , vn}
be a subset of V consists of n vectors. Then the following
statement for S are equivalent.

1 S spans V ;

2 S is linearly independent;

3 S is a basis for V .
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Proof.

We need to prove that S is linearly independent if and only if
span(S) = V . Suppose S is linearly independent and span(S) 6= V .
Then there exists v ∈ V such that v 6∈ span(S). Since S ∪ {v}
contains n + 1 vectors, it is linearly dependent by Theorem 4.2.
Thus there exists c1, c2, · · · , cn, cn+1, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn + cn+1v = 0.

Now cn+1 = 0 since v 6∈ span(S). This implies that
{v1, v2, · · · , vn} which leads to a contradiction.
Suppose span(S) = V and S is linearly dependent. Then by
Theorem 3.4, there exists a proper subset S ′ ⊂ S consists of k
vectors, k < n, such that span(S ′) = V . By Theorem 4.2, any set
of more than k vectors are linearly dependent. This contradicts to
that V is of dimension n.
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Theorem

Let V be an n-dimension vector space and let S be a subset of V .
Then

1 If S is linearly independent, then S is contained in a basis for
V ;

2 If S spans V , then S contains a basis for V .
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Proof.

1 If span(S) = V , then S is a basis for V . If span(S) 6= V , then
there exists v1 ∈ V such that v1 6∈ span(S). Now S ∪ {v1} is
linearly independent. Similarly if span(S ∪ {v1}) 6= V , there
exists v2 ∈ V such that S ∪ {v1, v2} is linearly independent.
This process may be continued until S ∪ {v1, v2, · · · , vk}
contains n vectors. Then S ∪ {v1, v2, · · · , vk} constitutes a
basis for V .

2 If S is linearly independent, then S is a basis for V . If S is
linearly dependent, then there exists v1 ∈ S which is a linear
combination of the remaining vectors in S . After removing v1

from S , the remaining vectors will still span V . This process
may be continued until we obtain a set of linearly independent
vectors consisting of n vectors which consists a basis for V .
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Theorem

Let A be an m × n matrix. The set of solutions to the system

Ax = 0

form a vector subspace of Rn. The dimension of the solution space
equals to the number of free variables.
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Example

Find a basis for the solution space of the system
3x1 + 6x2 − x3 − 5x4 + 5x5 = 0
2x1 + 4x2 − x3 − 3x4 + 2x5 = 0
3x1 + 6x2 − 2x3 − 4x4 + x5 = 0.

Solution: The coefficient matrix A reduces to the echelon form 1 2 0 −2 3
0 0 1 −1 4
0 0 0 0 0

 .

The leading variables are x1, x3. The free variables are x2, x4, x5.
The solution space is

span{(−2, 1, 0, 0, 0)T , (2, 0, 1, 1, 0)T , (−3, 0,−4, 0, 1)T}.
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Definition

Let A be an m × n matrix.

1 The null space Null(A) of A is the solution space to Ax = 0.

2 The row space Row(A) of A is the vector subspace of Rn

spanned by the m row vectors of A.

3 The column space Col(A) of A is the vector subspace of Rm

spanned by the n column vectors of A.
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Theorem

Let R be a row echelon form. Then

1 The set of vectors obtained by setting one free variable equal
to 1 and other free variables to be zero constitutes a basis for
Null(R).

2 The set of non-zero rows constitutes a basis for Row(R).

3 The set of columns associated with lead variables constitutes
a basis for Col(R)
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Example

Let

A =


1 −3 0 0 3
0 0 1 0 −2
0 0 0 1 7
0 0 0 0 0

 .

Find a basis for Null(A), Row(A) and Col(A).

Solution:

1 The set {(3, 1, 0, 0, 0)T , (−3, 0, 2,−7, 1)T} constitutes a basis
for Null(A).

2 The set {(1,−3, 0, 0, 3), (0, 0, 1, 0,−2), (0, 0, 0, 1, 7)}
constitutes a basis for Row(A).

3 The set {(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T} constitutes a
basis for Col(A).
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Theorem

Let R be the reduced row echelon form of A. Then

1 Null(A) = Null(R).

2 Row(A) = Row(R).

3 The column vectors of A associated with the column
containing the leading entries of R constitute a basis for
Col(A).
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Example

Find a basis for Null(A), Row(A) and Col(A) where

A =


1 −2 3 2 1
2 −4 8 3 10
3 −6 10 6 5
2 −4 7 4 4

 .
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Solution: The reduced row echelon form of A is
1 −2 0 0 3
0 0 1 0 2
0 0 0 1 −4
0 0 0 0 0

 .

Thus

1 the set {(2, 1, 0, 0, 0)T , (−3, 0,−2, 4, 1)T} constitutes a basis
for Null(A).

2 the set {(1,−2, 0, 0, 3), (0, 0, 1, 0, 2), (0, 0, 0, 1,−4)}
constitutes a basis for Row(A).

3 the 1st, 3rd and 4th columns contain leading entries.
Therefore the set {(1, 2, 3, 2)T , (3, 8, 10, 7)T , (2, 3, 6, 4)T}
constitutes a basis for Col(A).
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Definition

Let A be an m × n matrix. The dimension of

1 the solution space of Ax = 0 is called the nullity of A.

2 the row space is called the row rank of A.

3 the column space is called the column rank of A.
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Theorem

Let A be an m × n matrix. Then the row rank of A is equal to the
column rank of A.

Proof.

Both of them are equal to the number of leading entries of the
reduced row echelon form of A.
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The common value of the row and column rank of the matrix A is
called the rank of A.

Theorem (Rank-Nullity Theorem)

Let A be an m × n matrix. Then

rank(A) + Nullity(A) = n.

Proof.

The nullity of A is equal to the number of free variables of the
reduced row echelon form of A. Now the left hand side is the sum
of the number of leading variables and free variables and is of
course n.
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